I thought that this was interesting:
The article talks about desalination using oil tankers based off-shore and then leads into:
Desalination, of course, is well and good for communities that are close to the ocean and that can afford relatively expensive water. In the villages of sub-Saharan Africa, that's not the case. Forty-two percent of the region's population lacks access to a safe water supply, and the impact of waterborne diseases on public health is staggering: Of the 396 million cases of malaria every year, the majority are in sub-Saharan Africa; 90 percent of those who die from the disease are children under 5. About 100 million Africans are infected with the parasitic disease schistosomiasis, which kills tens of thousands annually, also mostly children. The death toll from diarrheal diseases is probably much higher. What's more, a lack of reliable, clean water precludes meaningful economic development. By one estimate, some 40 billion hours a year are spent collecting water in sub-Saharan Africa -- or roughly a year's labor for the entire work force of France. The work usually falls to women and children, who are left with little time for things like growing food or going to school.
Moving Water Industries, an 82-year-old, family-owned manufacturer of water pumps based in Deerfield Beach, Florida, has been selling portable pumps for irrigation and flood protection in Nigeria for more than 30 years. But its mission in Africa has taken on a new focus: addressing the problem of safe drinking water in rural villages. The company's solution is the SolarPedalFlo, a solar- and pedal-powered pump that can provide filtered and chlorinated water for thousands of people a day -- three to four times the amount that can be produced from a borehole equipped with a hand pump. Each unit costs about $15,000.
The article continues with on-site treatment technologies that does not require storage of chlorine as well as other technologies on the horizon. This was another one that I found interesting:
As a kid, Mark Sanders hated brushing his teeth with cold water. But watching all that clean, drinkable water run down the drain as it warmed up bugged him. So at the age of 9, he began thinking about ways to capture it and save it for some other purpose -- say, flushing the toilet. Three decades later, during a visit with his wife's family in drought-stricken Oklahoma in 2000, he took up the problem again with a newfound sense of urgency.
On the plane ride home to Louisville, he made a sketch of a water recycling system that would take used water from the bathroom sink, disinfect it, and reroute it to the toilet tank for flushing. Back home, he took the drawing to a friend who did home remodeling, and two weeks later -- with a hot glue gun, some PVC pipe, and a Tupperware container -- the friend had a prototype working in his own home. Sanders, a CPA by trade and at the time the CEO of a large medical practice, patented the system, built a basic website, and began touting the system to anyone he thought might be interested. The result: thousands of hits for the site and affirmation that the interest was out there.
... The AQUS System -- named one of the 100 best innovations of 2007 by Popular Science magazine -- uses standard plumbing parts and can be installed by a professional plumber in about two hours. Priced at $395 (before rebates), it can save up to 6,000 gallons of water a year in a two-person household.
No comments:
Post a Comment